Metformin Protects Skeletal Muscle from Cardiotoxin Induced Degeneration
نویسندگان
چکیده
The skeletal muscle tissue has a remarkable capacity to regenerate upon injury. Recent studies have suggested that this regenerative process is improved when AMPK is activated. In the muscle of young and old mice a low calorie diet, which activates AMPK, markedly enhances muscle regeneration. Remarkably, intraperitoneal injection of AICAR, an AMPK agonist, improves the structural integrity of muscles of dystrophin-deficient mdx mice. Building on these observations we asked whether metformin, a powerful anti-hyperglycemic drug, which indirectly activates AMPK, affects the response of skeletal muscle to damage. In our conditions, metformin treatment did not significantly influence muscle regeneration. On the other hand we observed that the muscles of metformin treated mice are more resilient to cardiotoxin injury displaying lesser muscle damage. Accordingly myotubes, originated in vitro from differentiated C2C12 myoblast cell line, become more resistant to cardiotoxin damage after pre-incubation with metformin. Our results indicate that metformin limits cardiotoxin damage by protecting myotubes from necrosis. Although the details of the molecular mechanisms underlying the protective effect remain to be elucidated, we report a correlation between the ability of metformin to promote resistance to damage and its capacity to counteract the increment of intracellular calcium levels induced by cardiotoxin treatment. Since increased cytoplasmic calcium concentrations characterize additional muscle pathological conditions, including dystrophies, metformin treatment could prove a valuable strategy to ameliorate the conditions of patients affected by dystrophies.
منابع مشابه
Mouse gastrocnemius muscle regeneration after mechanical or cardiotoxin injury.
The goal of our study was to compare the skeletal muscle regeneration induced by two types of injury: either crushing, that causes muscle degeneration as a result of mechanical devastation of myofibers, or the injection of a cardiotoxin that is a myotoxic agent causing myolysis of myofibers leading to muscle degeneration. Regenerating muscles were analyzed at selected intervals, until the 14th ...
متن کاملThe Combined Effect of High-Intensity Interval Training and Metformin on Gene Expression of Myogenin and Myostatin in Skeletal Muscle of Type 2 Diabetic Mice
Background: Myogenin (MyoG) and Myostatin (Mstn) play role in muscle growth and wasting, respectively. The present study aimed to investigate the combined effect of High-intensity Interval Training (HIIT) and Metformin drug (Metf) on gene expression of MyoG and Mstn in skeletal muscle of type 2 diabetic mice. Methods: 25 mice (C57BL/6) were assigned to two groups, including 1) Control © (n=5),...
متن کاملColchicine protects rat skeletal muscle from ischemia/reperfusion injury by suppressing oxidative stress and inflammation
Objective(s): Neutrophils play an important role in ischemia/reperfusion (IR) induced skeletal muscle injury. Microtubules are required for neutrophil activation in response to various stimuli. This study aimed to investigate the effects of colchicine, a microtubule-disrupting agent, on skeletal muscle IR injury in a rat hindlimb ischemia model. Materials and Methods: Twenty-one Sprague-Dawley ...
متن کاملRoles of ADAM8 in elimination of injured muscle fibers prior to skeletal muscle regeneration
Skeletal muscle regeneration requires processes different from developmental myogenesis. One important difference is a requirement of inflammatory reactions prior to regenerative myogenesis, by which injured muscle fibers must be eliminated to make new myotubes. In this study, we show that efficient elimination of injured muscle fibers during regeneration requires ADAM8, a member of a disintegr...
متن کاملBerberine protects against metformin-associated lactic acidosis in induced diabetes mellitus
Objective(s): Causality of occurrence of metformin-associated lactic acidosis (MALA) is a clinical problem. Currently, there is no drug available to prevent MALA. The present study was conducted to evaluate the protective effect of Berberine (BBR) against MALA in induced diabetic rat model. Materials and Methods: A sample of 75 healthy male Wistar rats was randomly selected according to inclusi...
متن کامل